
NHR Data Transfer Report

Freja Nordsiek (GDWG),
Steffen Christgau (ZIB), Jan Frenzel (TUD),

Marcel Nellesen (RWTH), Hendrik Nolte (GWDG),
Fabian Dünzer (RWTH)

June 2023

1 Introduction

Researchers may use more than one compute center for any of a number of
reasons including:

• Have compute tasks that have different requirements (data capacity, hard-
ware, connectivity, etc.) which can’t all be meet by the same compute
center.

• Preferred compute center does not have the capacity, so they spread the
load across more than one.

• Large collaborations where each institution primarily uses one compute
center and collaborators need to use that center to work with that data.

• Reuse of data that was generated by researchers from the center but that
is too big to be transferred but is of interest for users from other centers

Additionally, researchers sometimes change institutions and change compute
centers when they do and want to move their data with them.

Every compute center has one or more ways for its users to upload and
download their data. Most even provide instructions for these ways including a
recommended way. But when someone wants to transfer data between two com-
pute centers that they are a user at, things get more difficult or less convenient.
There are two main transfer strategies:

1. Transfer by intermediary host (Compute Center 1 → 3rd host → Com-
pute Center 2).

2. Point-to-point transfer directly between the two compute centers.

1

Strategy 1 where the intermediary host is the person’s own machines is the
most obvious method and always works. After all, both compute centers must
provide a way to upload and download data for their users. But, it isn’t the
most efficient method, requiring:

• Data has to be transferred twice

• User to have enough storage to host the temporary copy when the tool
can’t handle two remote hosts simultaneously, or have to do the transfer
in stages

• Often limited by the internet bandwidth of the user (usually less than that
of the compute centers)

Point-to-point transfers, when possible, are generally optimal. Though, they
can have many barriers including

• Limited access to internet from inside frontend/transfer nodes, whether
total or partial (e.g. outgoing SSH is blocked)

• Requirement of using a VPN to connect to the data center

• Security policies with regards to SSH keys and agents

1.1 Goals

As an alliance of computing centers in Germany, we want to provide our users
with a well thought out path for moving their data between the different NHR
centers (but also connect to Tier-3 and Tier-1 centers). Whether it be because
our users are using more than one center, have moved institutions and want to
use the closest center, or their needs have changed and a different center best
meets their needs. To do this, we analyze transferring data between pairs of
NHR centers in each direction, determining

1. Which transfers can be done point-to-point, and which must rely on an
intermediary host

2. What is the best way to do each transfer

3. What is the transfer bandwidth a user could expect

4. How to do the transfer safely from a security standpoint

In the end, we will be able to provide information to users on the best way/s
to safely transfer data between different NHR centers. We also hope to identify
changes that could be made to improve the transfer story and/or provide more
convenient methods for users.

2

2 Data Transfer Strategies

There are various alternatives to perform data transfer in regards to:

• Direction: push and pull. In push transfers, one machine transfers data
from itself to another machine. In pull transfers, one machine transfers
data on another machine to itself.

• Transport protocol: TCP, UDP, storage devices via truck1

• Synchronicity: Asynchronous (user request transfer, waits until comple-
tion), synchronous - user runs program to start transfer and has to wait
until complete

• Single file/object vs. several files/objects

Our requirements for data transfer are:

• Usability - Easy to use

• Security

• Efficiency

• Prioritization - to allow more important/interactive packets to prioritize
vs. background large-data transfers

The transfer strategies we currently use in production are SSH based. Some
NHR centers are working on providing object storage systems (e.g. S3-like,
Ceph, etc.) that would be accessible both internally in the compute center and
from the outside via HTTP REST APIs. If these come to fruition, they would
provide additional transfer methods for users.

2.1 SSH/sftp

sftp2 is a simple client program based upon the SSH protocol with a similar
interface to FTP clients that copies files and directories and allows one to see
what files and directories are there, and is capable of doing both push and pull
transfers. It is meant for interactive use, though it can be scripted in batch
mode with the -b option. This means that it does not try to identify changes
and only transfer the changes other than to the extent that in interactive use a
person can manually decide which file/directories to transfer for updating and
which not to send, instead transferring everything and overwriting. While very
simple, this has the downside that subsequent synchronizations take the full
transfer time. However, for simplicity to users, we will only consider the batch
script case of transferring whole and not interactively deciding item by item.
The simplest push sftp batch script is:

1https://iopscience.iop.org/article/10.1088/1748-0221/15/09/T09005/pdf

https://www.researchgate.net/publication/220951078_Performance_adaptive_UDP_

for_high-speed_bulk_data_transfer_over_dedicated_links
2https://man.openbsd.org/sftp

3

https://iopscience.iop.org/article/10.1088/1748-0221/15/09/T09005/pdf
https://www.researchgate.net/publication/220951078_Performance_adaptive_UDP_for_high-speed_bulk_data_transfer_over_dedicated_links
https://www.researchgate.net/publication/220951078_Performance_adaptive_UDP_for_high-speed_bulk_data_transfer_over_dedicated_links
https://man.openbsd.org/sftp

put -R -p LOCAL_PATH REMOTE_PATH

bye

and the corresponding pull batch script is:

get -R -p REMOTE_PATH LOCAL_PATH

bye

2.2 SSH/scp

scp3 copies files and directories whole, and is capable of doing both push and
pull transfers. This means that it does not try to identify changes and only
transfer the changes, instead transferring everything and overwriting. While
very simple, this has the downside that no synchronization is done, requiring
the transfer time to upload all data.

In the past, scp used its own custom file transfer protocol but now uses
the SFTP protocol by default. This is significant because while some compute
centers require using a VPN for SSH shell access, a subset of these provide
an externally available host that does allow SFTP since the OpenSSH server
(among other SSH servers) can have that protocol enabled while disabling shell
access thereby limiting security issues (less security issues with transferring files
than with executing programs).

One special feature of scp is its ability to actually transfer between two
different remote hosts, letting the machine it is run from be the intermediary
host but without actually having to store the data locally. This can be particu-
larly useful when a point-to-point transfer is impossible. In this event, a user’s
only choice is to download data to an intermediate host (usually the user’s own
machine) from one center and then upload it to the second center. For tools
that, unlike scp, cannot transfer between two remote hosts, that intermediate
host must have enough local storage for the whole transfer or the transfer must
be broken up into smaller chunks each of which can fit in the storage of the
intermediate host.

2.3 SSH/rsync

rsync (https://rsync.samba.org) is a file synchronization tool that transfers
the differences between the source and the destination, and is capable of doing
both push and pull transfers. While this makes the algorithm more complicated,
it means that subsequent synchronizations of previously transferred data only
have to transfer the changes. This can greatly decrease the required transfer
time in many cases.

But, due to needing to calculate the differences to transfer, the rsync pro-
gram must exist on both ends. rsync either launches rsync on the remote host
via SSH, or the remote host runs an rsyncd server to connect to. Since the for-
mer is not accessible via the SFTP protocol, rsync will not work with remote

3https://man.openbsd.org/scp.1

4

https://rsync.samba.org
https://man.openbsd.org/scp.1

hosts where the SSH server only allows SFTP (say, to let sftp and scp work)
or has been explicitly allowed as a shell program in the SSH server config. This
means that rsync will generally work in less situations than sftp and scp.

Additionally, unlike scp, rsync does not support transfer between two re-
mote hosts. This means that if a point-to-point transfer is impossible, rsync
must first transfer files to the storage of the intermediate host and then transfer
them to the second compute center.

2.4 S3/rclone

The tool rclone can be used to migrate data from and to cloud storage. It
allows the syncing, transfer, compress and mounting. Different types of cloud
storage solutions are supported, e.g. S3 object stores. It can be used from Linux,
Windows and Mac OS; therefore allowing an easy adaptation4. Additionally,
unlike scp, rclone does not support transfer between two remote hosts. This
means that if a point-to-point transfer is impossible, rcone must first transfer
files to the storage of the intermediate host and then transfer them to the second
compute center.

2.5 S3/MinIO Client

MinIO Client supports transfers between local filesystems and S3 cloud storage
systems. It allows the usage of standard UNIX commands like ls, cat and cp to
access and manage the data on the cloud storage systems5. Additionally, unlike
scp, MinIO Client does not support transfer between two remote hosts. This
means that if a point-to-point transfer is impossible, MinIO Client must first
transfer files to the storage of the intermediate host and then transfer them to
the second compute center.

3 Security Considerations

3.1 SSH

3.1.1 Basics

Many NHR centers restrict SSH shell access except through an SSH jumphost.
This is not a problem for sftp, scp, and rsync which are easy to configure to
use jumphosts. Many also restrict SSH shell access, allowing only SFTP access,
on some nodes which prevents rsync from working but still lets sftp and scp

work.
But, the big consideration with regards to users has to do with SSH authen-

tication. Point-to-point transfers mean that one has to SSH into the node of
one NHR center and initiate the transfer to/from a node of a different NHR
center via an SSH based method. This means that the user must authenticate

4https://rclone.org/
5https://github.com/minio/mc

5

https://rclone.org/
https://github.com/minio/mc

to the second center while logged into the first, which has a number of security
implications and requires consideration of the security policy.

With SSH public key authentication, an NHR center’s security policy may
quite reasonably forbid users from placing their SSH private keys on any ma-
chines other than ones they directly control (which is not the case for nodes
of another NHR center) or place SSH keys for external machines on a machine
controlled by the center. That means that a user cannot just place their private
key on the node of the first center to facilitate transfers to/from the second
center. Even if the security policy of both NHR centers allowed it, it is still
a VERY BAD IDEA! Those SSH keys can be stolen, and the decryption
passwords gotten by merely logging the SSH session.

SSH password based authentication (for the NHR centers that enable it) has
the same issues. For very good reasons, an NHR center may not allow a user
to enter their password to the center on machines not controlled by the user or
to enter passwords to machines not controlled by the center. But even if both
NHR centers allowed it, it is still a VERY BAD IDEA! The passwords can
be gotten by merely logging the SSH session.

This leaves SSH agent forwarding as the only remotely tolerable option be-
tween NHR centers that don’t share user authentication (e.g. GWDG Göttingen
and ZIB Berlin). But naive SSH agent forwarding is still opening Pandora’s box
because, by default, the SSH agent says yes to every key request. There are two
possible ways to mitigate this.

3.1.2 SSH-agent confirmation

First, if the SSH agent prompts the user on their personal machine for con-
firmation for each request, this risk is mostly mitigated. This represents the
currently advertised solution at most NHR centers. An attacker would need to
get the timing perfect to get their request in after the user hit ENTER on the
command but before the user’s command sent the request, but the user would
very quickly notice something is weird because they would then get a second
request (of course, this does depend on the user knowing what this means and
the reaction time required to stop an attack being long enough that the user
has even a hope of stopping it). The trick, if using OpenSSH’s included SSH
agent, is using ssh-add -c. However, due to the added and irregular latency
from the user having to click yes on the confirmation every time, this makes
benchmarking more difficult. It also doesn’t work for exhaustive benchmarking
with many many trials. But it is the best option to recommend to users.

3.1.3 authorized keys

The second option is to use dedicated single purpose SSH keys for any SFTP
based tool and each non-SFTP based tool for each NHR center and lock them
down in $HOME/.ssh/authorized_keys6. Of course, the best security comes
from using this and the SSH-agent asking for confirmation. The idea is to set

6(https://man.openbsd.org/sshd#AUTHORIZED_KEYS_FILE_FORMAT)

6

https://man.openbsd.org/sshd#AUTHORIZED_KEYS_FILE_FORMAT

the command option for each single purpose key to restrict what it can do, as
well as the restrict option to disable all forwarding among other things. For
rsync, one could set it to the rrsync script7 to further restrict what directory
rsync can be run on as well as other things like if it should be read-only, write-
only, or no files can be deleted. For pull transfers with SFTP based tools, one
could use internal-sftp -R to make it so that SFTP access is readonly. This
limits the damage that can be done if the special use SSH key in the forwarded
SSH agent gets compromised from not asking for confirmation, particularly the
the rsync key since it would only be able to affect the directory specified in its
command field. Unfortunately, the key for SFTP based tools would still be rather
dangerous as that one could still read all the user’s files. This is acceptable for
benchmarks with functional accounts, but being able to read all the user’s files
means that for SFTP, this is not good enough to recommend to users. But
left out is SFTP based push transfers which need write access. OpenSSH’s
internal-sftp, and its higher overhead and separate executable sftp-server
provide no option to contain them to only a specific directory, so they can’t be
used by themselves to give the proper security. However, if the target machine
has unprivileged user, mount, and PID namespaced enabled; one could use
a script like the following to lock down access to a single directory (second
argument) for either tool (first argument) in what is essentially a primitive
container:

#!/bin/bash

First argument, $1, is the tool (sftp or rsync)
Second argument, $2, is the path to the directory where the transfer
will take place in

Determine the actual command to run at the end for the transfer.
if test "$1" = "sftp"
then

CMD=sftp-server
else

CMD=SSH_ORIGINAL_COMMAND
fi

Make the directory for the execution trap
rm -rf TRAP
mkdir -p TRAP
cd TRAP
tar -xzf TRAP_TARPATH.tgz

Get the absolute path for unshare for use after PATH has been changed.
UNSHARE=‘which unshare‘

Launch the first namespaces and in those namespaces:
1. Make the bind mount
2. Change PATH
3. Launch the second set of nested namespaces, chroot, and launch the transfer program
exec unshare -mpU -fr --mount-proc bash -c \

’mount --bind $2 ./tdir; export PATH="/usr/bin"; exec $UNSHARE -mpU -fr --mount-proc -R ./tdir $CMD’

Where TRAP is the directory the execution will be trapped in and TRAP_TARPATH.tgz
is the path to a tarball containing the contents for the TRAP directory (it needs

7(https://download.samba.org/pub/rsync/rrsync.1)

7

https://download.samba.org/pub/rsync/rrsync.1

to be made fresh each time in case the transfer tool damages it on an earlier
iteration). Note that TRAP_TARPATH.tgz must be outside of TRAP to protect it.
Note that, as found out from the trappedssh project (it is a spinoff of the idea
presented here) that tries to do this in a more systematic way for all users (as an
alternative to an SFTP-only host), it is very difficult to get these kinds of shell
scripts right and not have string bugs that open Pandora’s box by running code
controlled by the SSH client outside the sandbox. TRAP_TARPATH.tgz would be
pre-prepared to have the following directory structure:

tdir/ Directory that will be the bind mount point for the directory to access.

lib*/ Library directories for any libraries needed by the programs in usr/bin.

usr/bin/ Directory for all executable programs that are used for the transfer
on this end including sftp-server for SFTP based tools and rsync.

usr/lib*/ Directories for any libraries needed by the programs in usr/bin.

Note that for the transfer, the directory at $1 becomes /tdir in this execu-
tion environment. With this script, then the command field in .ssh/authorized_keys
would be "TRAP_SCRIPT sftp DIR" for SFTP based methods and "TRAP_SCRIPT rsync DIR"

for rsync where TRAP_PATH is the path to the script and DIR is the directory
that the transfers should take place in. On systems with the enabled unprivi-
leged namespaces, this will generally be safer than rrsync or internal-sftp -R

due to the additional isolation. But do note, however, bugs in the namespaces
implementations can pose security risks.

3.2 VPN

Rather than leave SSH access to the frontend/transfer nodes open to the entire
internet, many NHR centers require a VPN to access the frontend nodes. The
NHR centers requiring a VPN are

• RWTH

• TUD

• TUDa

This makes transfers to those centers impossible unless one is on the VPN,
which other NHR centers are NOT. This necessarily means that push transfers
to an NHR center requiring a VPN are impossible from other NHR centers with-
out the use of virtual machines or heavily modified file transfer tools combined
with userspace networking. As that is high overhead and requires advanced
knowledge and tools, we cannot recommend users to use such methods. Thus,
we only consider pull point-to-point transfers and transfer by intermediate host
with these NHR centers.

For transfers between two NHR centers that require a VPN, point-to-point
transfers are not feasible at all except for very advanced users and thus we can

8

SSH Protocols
Center Jumphost SSH Out Transfer Nodes VPN inside VPN outside VPN
FAU ✓ ✓ shell, SFTP
GWDG ✓ shell, SFTP
RWTH ✓ ✓ ✓ shell, SFTP
TUD ✓ (only dedicated hosts) ✓ ✓ shell, SFTP
TUDa ✓ ✓ shell, SFTP
ZIB ✓ shell, SFTP

Table 1: The NHR centers participating in this project and whether they require
SSH jumphosts, allow outgoing SSH connections, have dedicated transfer nodes
(login/frontend nodes are used otherwise), have a VPN, and what SSH protocols
are allowed inside and outside the VPN if present (blank means either not
applicable or nothing).

only consider transfer by intermediate host. Depending on the VPN configu-
rations, it can be difficult or impossible to configure a single machine to be in
both VPNs securely, so using scp with both remote hosts simultaneously is not
a good idea. Instead, a user would need to connect to the VPN of the source
compute center, download some or all of the data, disconnect from that VPN,
connect to the VPN of the destination compute center, and then upload the
data; repeating as necessary till all data is transferred.

4 NHR Center Overview

An overview of the different NHR centers participating in this project and how
they can be connected to is given in Table 1. Some NHR centers have dedicated
links to each other, which can help facilitate faster data transfer than over the
open internet, which are

• ZIB–GWDG (2 × 10 GBit/s Ethernet)

Additionally, some NHR centers have direct connections/cooperations with
other non-NHR HPC centers such as

• JARA (Jülich Aachen Research Alliance) (JSC–RWTH)

5 Hot, Warm, and Cold Data

While large amounts of data are generated and/or processed on HPC clusters,
HPC clusters are not meant for long term data storage. However, interest in
locally available data might increase by publications when researchers from other
centers might want to reuse or analyze the data themselves. In this case, the
research data will already be stored in locally available storage and research data
management systems. The accessibility and the performance of these systems
is an important factor in the reusability of the research data.

9

Center Storage Name Storage Path File System
FAU FASTTMP /lustre/... Lustre

GWDG WORK /scratch/usr/... Lustre
RWTH HPCWORK /hpcwork/usr/... Lustre
TUD Workspace /scratch/ws/... Lustre
TUDa HPC SCRATCH /work/scratch/... GPFS
ZIB WORK /scratch/usr/... Lustre

Table 2: Employed file systems for the performance study

Every cluster provides a HOME directory, which is where the data is the full
temperature range (hot since it is very available, cold because it is also backed
up) can be placed but often the performance and/or quota is small. This data
is not meant for sharing between users. Most clusters provide one or more
“work” directories for hot data with improved performance and capacity, but
often meant for medium-term storage as opposed to long term storage. Often,
project sub-directories are provided in addition to user sub-directories, which
makes the “work” directories good places to put hot data meant to be used by
more than one user. Most also have some sort of “temporary” storage which
is the hottest but meant only for very short term storage (e.g. automatically
deleted after a very short time interval). Some clusters provide access to a
“permanent” directory for cold data to be stored long term with backups, with
low performance (e.g. a tape library) and often limited capacities.

The transfers we consider are for between the hot and warm storages of the
different NHR centers, so this includes the HOME directory and “work” directo-
ries. But “permanent” directories are excluded.

6 Data Transfer Benchmarking

6.1 Methodologies

6.1.1 Manual Benchmarking

The main focus of the benchmarks was the performance of large scientific and
“hot” data between NHR benchmarks. Therefore, the main work storage was
chosen as the source and target of the transfers. This storage is typically differ-
ent from the home directories, usually realized by a Lustre or similar filesystem.
Table 2 shows the file systems used within the studies.

To mimick a realistic transfer, a 10GiB source file was created on each site.
The file was filled with random data to foil any compression that a tool may
try to use. That source file was then transferred five times from and to the
participating NHR centers. For each transfer, a different target file was used
to avoid optimizations due to in-situ replacement of an existing file. Out of
the five transfers, the one with the median runtime was selected for reporting
the value. It was also verified that the local storage performance exceeds the

10

network bandwidth between the NHR centers.

6.1.2 Beginnings of an Automated Benchmarking Program

An automated transfer benchmarking program has been built which can do
rsync, scp, and sftp with a batch script. It first loads definition files to get the
sizes of the benchmarks, the storage stores at each NHR center to benchmark,
the login and transfer hosts for each NHR center, and the usernames and other
variables to use for each NHR center. Then it iterates over every pair of NHR
centers it has been instructed to benchmark and does the following:

1. Connect to both NHR centers via SSH.

2. From each NHR center, probe which SSH protocols (shell and SFTP), if
any, the other one allows on its login and transfer hosts, if any.

3. Iterate over each storage pair to benchmark between (home with home,
work stores with work stores, etc.)

(a) Iterate over each file size to benchmark

i. Iterate over each center in the pair to be the source of the data

A. Make the files to transfer. The number of files that are made
is determined by the target total size (from the configuration
files) and the maximum number of allowed files (some NHR
centers have a maximum allowed inode usage in some data
stores).

B. Iterate over every combination of transfer method, trans-
fer direction (push/pull), and host type (login/transfer) that
the probed SSH protocols indicate are possible. For each
combination, transfers are done one after another till the
minimum number of trials and minimum transfer time has
passed (these are set by CLI arguments to the program).
Each transfer tool is operated in a way that the time needed
to actually do the transfer can be measured while the time
to establish the SSH connection and authentication are ex-
cluded (though the total time is still recorded). After each
transfer, the files on the target are deleted.

C. Delete the files on the source.

4. Close SSH connections.

The benchmarked file sizes are 0 B, 1 B to 256 MiB in multiplicative steps
of 16, and 1 GiB to 8 GiB in multiplicative steps of 2.

The program works between GWDG and ZIB, which have a shared authen-
tication system and thus don’t require the SSH agent at all.

11

Results During the execution, we identified two challenges: One is that it
is slow, taking about 3 full days for just GWDG and ZIB, though this can be
improved by making the range of file sizes smaller or parallelizing over NHR
center pairs to do as many pairs that don’t overlap with each other as possi-
ble at a time. The second problem is the bigger problem. For a single pair
of NHR centers, the program can do thousands of individual benchmark trials
which means thousands of SSH authentications. This makes use with SSH agent
forwarding with confirmation prohibitively difficult because the operator must
then click the confirmation thousands of times per NHR center pair. For all
NHR centers, this would be many tens of thousands of confirmations over a few
weeks assuming confirmation was instant (with confirmation, several weeks or
a few months). Additionally, with such a large number of authentications, the
security benefits of asking for confirmation begin to diminish as the operator
tires and cannot tell a confirmation request for a benchmark apart from a con-
firmation request that an adversary might be making on the respective NHR
center. So, we are looking into using functional accounts with special purpose
keys with $HOME/.ssh/authorized_keys as described in Section 3.1.3 just for
benchmarking where we can turn SSH-agent key confirmation off with little
impact in the event of a compromise. Though this will limit the possible bench-
marks that can be done between NHR centers where one or both do not allow
unprivileged user, mount, and PID namespaces (SFTP-based pull transfers and
rsync via rrsync would still be reasonably safe).

6.1.3 S3 data transfer

The performance of file transfers between the different NHR centers and different
S3 storage solutions offered by the centers was investigated.

Configuration NHR@Göttingen provides an NVME-based Ceph cluster to
provide solely an S3 interface.

Origin / Target GWDG S3 RWTH S3 TUD S3
GWDG Cluster 40MiB/s 44 MiB/s 15 MiB/s
RWTH Cluster 155 MiB/s 109 MiB/s 19 MiB/s
TUD Cluster 62 MiB/s 62 MiB/s 48 MiB/s

Table 3: Uploading files from the computing cluster to a S3 storage system. Ten
files with each 10gb were transmitted with rclone

The results of the measurements show a strong impact of the selected tool
on the transfer speed. Our experiments show that e.g. transfering data through
the minIO client can result in a performance increase of at least 200% when
compared with rclone.

Comparing the results for NHR@Göttingen with a proper S3-Warp bench-
mark, as it was performed last year in the storage report, one can see that the
full bandwidth wasn’t nearly satisfied, which peacked back then at 12314 MiB/s

12

Origin / Target GWDG S3 RWTH S3 TUD S3
GWDG Cluster 215 MiB/s 138 MiB/s 118 MiB/s
RWTH Cluster 534 MiB/s 489 MiB/s 488 MiB/s
TUD Cluster 199 MiB/s 189 MiB/s 191 MiB/s

Table 4: Uploading files from the computing cluster to a S3 storage system. Ten
files with each 10gb were transmitted with minIO

for 64MiB filesizes for the mixed Bandwidth measurement. An important re-
mark is, that the Ceph-cluster has a very efficient caching, thus distorting this
value for the mixed measurements.

Other Centers In a different context the file transfer to other centers’ S3
storage solutions was investigated using rclone and minIO. The median results
of five measurements are shown in 5 and 6. Again minIO reaches higher speeds
than rclone, though not always by as much as in the previous benchmarks.
As neither tool allows point-to-point transfers, the transfer speeds involving the
RWTH cluster are most relevant, providing approximations of the upper bounds
for corresponding transfers between S3 storage systems.

Origin/
Target

RWTH
Cluster

RWTH
S3

GWDG
S3

UDE*
S3

UzK*
S3

ZIH*
S3

RWTH Cluster - 261 253 251 101 34
RWTH S3 237 - 268 220 108 34
GWDG S3 186 141 - 159 100 35
UDE* S3 175 131 144 - 107 32
UzK* S3 100 111 111 111 - 31
ZIH* S3 36 31 32 33 39 -

Table 5: Copying files between the RWTH data transfer nodes and S3 storage
systems. The centers marked with an asterisk are not members of NHR. All
values are given in MiB/s. 20 files with 1 GiB each were transmitted with
rclone

7 Results

In order to compare the transfer performance, the reported transfer time of the
employed tools was used together with the known file size to derive the transfer
rate. The rate is reported in MBit/s to facilitate a comparison with the network
connections between the centers. Table 7 shows the outcome of the experiments
using the mentioned tool. For easier overview, the results are also depicted in
Fig. 2, where arrows indicate the start and end of data transfers. Each arrow
is annotated with the maximum bandwidth achieved in the experiments. The
transfer rates are for 10 GiB files via the manual benchmarking (all rates except

13

Origin/
Target

RWTH
Cluster

RWTH
S3

GWDG
S3

UDE*
S3

UzK*
S3

ZIH*
S3

RWTH Cluster - 898 1248 365 111 763
RWTH S3 656 - 544 411 109 275
GWDG S3 299 270 - 228 108 196
UDE* S3 434 320 332 - 109 110
UzK* S3 108 111 110 110 - 110
ZIH* S3 186 183 172 176 100 -

Table 6: Copying files between the RWTH data transfer nodes and S3 storage
systems. The centers marked with an asterisk are not members of NHR. All
values are given in MiB/s. 20 files with 1 GiB each were transmitted with minIO

between GWDG and ZIB) and 8 GiB files via the automated benchmarking
tool (just for rates between GWDG and ZIB). Note that the data transfer rates
are not symmetric. The speed of a file transfer depends on the data center
from which the transfer originates. In addition it is also important to take the
direction of the transfer into account.

We were only able to benchmark the different tools as a function of file
size with the automated benchmark tool for one pair of NHR centers (GWDG
and ZIB). An example plot of the file transfer times and data transfer rates
between ZIB and GWDG is shown in Figure 1. For this pair of NHR centers,
we found that for small file sizes, rsync performs much better than scp and
sftp. However, for larger file sizes, scp and sftp catch up with rsync and
sometimes exceed its performance, as seen in Table 7. From this, we conclude
that rsync is much more efficient with transferring metadata, which dominates
for small files; but that it can sometimes be less efficient for the actual file
data itself, which dominates for large files. While the bandwidth limit for the
tools is different for different pairs of NHR centers and likely the minimum
time to transfer each file even if it has zero size (at the very least, it is latency
bound, which is determined by the total fiber/coax distance, the number of
hops, etc.), we expect that the pattern is similar for each pair of NHR centers.
From experience between a variety of different machines in various locations,
rsync dominates for hundreds and thousands of small files which suggests this
is not an unreasonable expectation that the pattern is similar between each
other pair of NHR centers.

8 Recommendations

Based on the results presented in the previous sections and discussions during
the monthly Data Management meetings, recommendations regarding a few
selected points are proposed.

14

1 B 32
 B

1 K
iB

32
 Ki

B
1 M

iB
32

 MiB
1 G

iB
32

 GiB

File Size

10−1

100

101

102

M
ed

ia
n

Fil
e

Tr
an

sf
er

 T
im

e
(s

)

File Transfer Time

rsync(push)
rsync(pull)
scp(push)
scp(pull)
sftp(push)
sftp(pull)

1 M
iB

32
 MiB

1 G
iB

32
 GiB

File Size

10−1

100

101

102

M
ed

ia
n

Fil
e

Tr
an

sf
er

 T
im

e
(s

)

File Transfer Time

1 B 32
 B

1 K
iB

32
 Ki

B
1 M

iB
32

 MiB
1 G

iB
32

 GiB

File Size

10−3

10−1

101

103

M
ed

ia
n

Tr
an

sf
er

 R
at

e
(M

bi
t/s

) Data Transfer Rate

1 M
iB

32
 MiB

1 G
iB

32
 GiB

File Size

102

103

M
ed

ia
n

Tr
an

sf
er

 R
at

e
(M

bi
t/s

) Data Transfer Rate

ZIB work to GWDG work (login node)

Figure 1: The transfer performance for transfering files from ZIB to GWDG as
a function of file size for the two sites’ work storage systems. The top two plots
show the median transfer time per file as a function of file size, and the bottom
two show the median data transfer rate as a function of the file size. The left
two plots who the whole range of file sizes, while the right two plots are zoomed
in to show only file sizes ≥ 1 MiB. Each different transfer method and direction
combination are shown as different lines. All plots share the same legend, which
is shown in the top-left plot.

15

830
M
B
it/s

880
M
B
it/s512 MBit/s

576 MBit/s

12
54

M
B
it
/s

88
1
M
B
it
/s

653
MBit

/s

916
MBit

/s

Figure 2: NHR centers in Germany and the maximum bandwidth between them
as measured in the data transfer experiments.

16

Origin/Target FAU GWDG TUD ZIB

FAU — ? ?
rsync
1232
1254

GWDG ? —
rsync
512
496

sftp
653
647

TUD ?
rsync
576
433

—
rsync
880
666

ZIB
rsync
690
881

sftp
916
845

rsync
830
846

—

Table 7: Maximum data transfer rate between the NHR centers in MBit/s for
large files (10 GiB or 8 GiB depending on the benchmarking method). The
origin of the data transfer is the center in which the data transfer is issued. The
origin is shown in the first column, the target in the first row. The first line in
a cell shows tool that achieved the best rate. The second line tells the transfer
rate from the origin to the target (origin → target, push), and the third line the
reverse direction (origin ← target, pull).

8.1 S3

Using S3 as an indirect medium for data transfers is not recommended. We
could observe that a) the transfer speeds were (much) slower compared to
rsync/scp and b) it has to be done twice, once for uploading, and once for
downloading. However, data is usually only staged on an HPC system for com-
pute purposes, which only covers part of the entire data life cycle. That means
that data has to reside somewhere else. This main storage could be done via
S3, particularly since most implementations offer a high durability. S3, due
to its HTTP interface, has no security implications for the HPC system itself.
Therefore, we recommend that users should take a storage system into account,
which offers an S3 interface when choosing a storage system to hold their data
during the other, interactive, parts of the data life cycle. If so, users should
keep in mind that this will expose the secret and access keys of their bucket
to an attacker on the HPC system. Therefore, we recommend to use keys with
limited privileges, i.e. restricted to read access, or restricted to limited prefixes.
In addition, if no FUSE mount is required, we recommend to use the minio
client to sync data rather than rclone due to its massive speed advantage.

8.2 Data Mover Nodes

During the project we had vivid discussions about data mover nodes, as some
centers offer them while others do not. In general, data mover nodes are fron-
tends, which solely serve a single purpose: Moving data. This allows, for in-

17

stance, to only allow a locked down access, e.g. only provide sftp access, and
not full shell access. This in turn can enable providers to open up the firewall to
provide easier data transfers to users. In addition, these nodes can be equipped
with higher network bandwidth compared to other nodes. To summarize, there
are two main advantages:

• Security: If a center uses a firewall and only offers access to the frontend
nodes via a VPN, data mover nodes can be located outside of the firewall,
since one can configure the SSH server so that only SFTP is allowed,
but no shell access. This limits the overall exposure of the system, while
offering convenient and fast data transfer services.

• Slurm Integration: Data mover nodes can be hosted as a Slurm parti-
tion. This enables the users to “sbatch“ a data staging job. This has the
advantage that jobs which depend on the successful data transfer can be
dealt with using Slurm job dependencies, easing this burden from the user
to manage these dependencies in a different manner.

However, there are also concerns that data mover nodes will add further com-
plexity to a system, both for users and admins. On the one side, users have to
be aware of the data mover nodes and have to use them, which might not be
the default for all users which will still use the login nodes for data transfers.
In addition, these nodes also require additional effort by admins, particularly if
these nodes are located outside of the firewall and are therefore very exposed.
Of course, the latter could be handled by only allowing access from IP-addresses
upon explicit user request.

Last but not least, there is the general problem of dark data, i.e. data which
is there, which no one really cares that it is there. By offering services for large
scale, bulk transfers, users could be encouraged to just bulk-transfer their data
blindly, skipping work-intensive filter steps.

8.3 Securing Connections

The easiest way is to restrict the SSH server to not allow shell access. One
could further provide documentation and training to users on how to use the
ssh config to restrict the capabilities of keys, and offer similar services for rrsync.
The rather advanced method described in Section 3.1.3 was intended to pitch
an idea and raise awareness.

It can also be recognized, that in the case of a security event it might be
useful to offer a different way for users to access their data. For this, WebDAV
might be a good solution, which could also be used beyond pure emergency
access, since it can also work with a second factor.

9 Conclusion

Within this report we analysed the data transfer between the different NHR cen-
ters and provided reference values, guidelines; and best practices for researchers

18

and operators of compute clusters to improve their data transfer rates.
Within the previous sections the performance of the data transfer between

the centers was analysed. Based on this analysis, a few general recommendations
for data transfer from, to and between the NHR centers can be made.

The first step for every researcher should be an analysis of the current situ-
ation. The following questions can provide a guideline: What amount of data
should be transfered?

• Where is the data generated?

• What amount of data should be transfered?

• How many files should be transferred?

• Is it necessary to transfer the complete data or is only a subset required
for the computation?

• Where should the data be processed and stored?

After the questions above the data can be transferred. The measurements
within this report can than be used as a reference value, in case the achieved
transfer rates are constantly significantly smaller than the values presented, the
local infrasturcture might enforce a bottleneck on the overall transfer speed.

19

	Introduction
	Goals

	Data Transfer Strategies
	SSH/sftp
	SSH/scp
	SSH/rsync
	S3/rclone
	S3/MinIO Client

	Security Considerations
	SSH
	Basics
	SSH-agent confirmation
	authorized_keys

	VPN

	NHR Center Overview
	Hot, Warm, and Cold Data
	Data Transfer Benchmarking
	Methodologies
	Manual Benchmarking
	Beginnings of an Automated Benchmarking Program
	S3 data transfer

	Results
	Recommendations
	S3
	Data Mover Nodes
	Securing Connections

	Conclusion

